![]() |
| Larry Smarr, director of Calit2, remarked that high-definition, real-time collaboration is possible at Calit2 because 'we have made the necessary human and technical resource investments to drive applications of the optical network revolution.' |
For the members of CineGrid, who assembled recently at the
University of California, San Diego, for their fifth annual conference,
experimenting with “extreme” digital media has increasingly become a
finely tuned balance of “3D in support of collaboration, and
collaboration in support of 3D.”
“Interest in 3D is being driven by scientific visualization, by consumer
electronics and by digital cinema,” remarked Laurin Herr, president of
the consulting company Pacific Interface, Inc., and one of the founders
of CineGrid, the non-profit international membership organization. “This
year, we put together a rather extensive program looking at all these
issues, right down to the first principles about how 3D stereo is
perceived by human beings. There was also some really impressive work
being done this year in our second main thrust, remote collaboration for
cinema post-production, both 2D and 3D.”
CineGrid represents one of the first major research collaborations at
the UC San Diego division of the California Institute for
Telecommunications and Information Technology (Calit2). Headquartered in
California, CineGrid is leveraging next-generation cyberinfrastructure
to promote higher-resolution imagery and better sound as well as more
secure and efficient distribution of digital media over photonic
networks.
As 3D stereoscopic content begins to emerge as an industry focus for television and motion pictures, the stakes are high for the people working behind the scenes to make production and distribution more efficient while creating content that will be attractive for audiences. CineGrid presenter David Wertheimer, the CEO and executive director of the Entertainment Technology Center at the University of Southern California, reported at the conference that 25 percent of consumers are forecasted to buy a 3DTV in the next three years — a percentage that will certainly rise as the price of 3DTVs goes down (from an average of $2,500 today to an expected $600 in 2014).
But that’s presuming the infrastructure for production and distribution
can be improved to handle the growth of 3D stereo entertainment. Paul
Hearty, vice president of the Technology Standards Office for Sony and a
founding member of CineGrid, says that one “simple, brute force way” of
looking at 3D cinema streaming is to think of it as requiring twice the
number of pixels as standard 2D cinema — and when streamed, it requires
twice as much bandwidth. Further, “it’s not only the amount of data
that’s challenging," he noted, "it’s keeping both stereo feeds in exact
sync."
As 3D collaboration becomes more prevalent in the academic world, it’s
vitally important that potentially sensitive scientific data — such as a
3D brain scan being examined by two surgeons working remotely — be
rendered with the utmost precision, and transmitted without compression
artifacts. Such precision can require as much as two 10Gigabit/second
network links.
A number of presentations at the 2010 CineGrid workshop touched on the
many challenges and approaches for producing and distributing 3D stereo
content. Members of the Prague-based CESnet, the Czech national research
and educational networking organization, conducted a live, interactive
2K stereoscopic cinema post-production demo, and members of the CineGrid
Amsterdam group showcased the fruits of their labors to produce 4K
stereo content from the Holland Festival 2010 (4K is four times the
resolution of standard high-definition TV). Another stand-out demo came
from members of the Brazil-based 2014K.org, a group that plans to stream
the games of the 2014 World Cup in 4K 3D to movie theaters and other
venues around the world.
The second main thrust of this year’s CineGrid conference — remote
collaboration over high-speed networks — was exemplified in a
presentation by Leon Silverman, general manager of Walt Disney Studios’
Digital Studio Operations. Silverman’s presentation, “Opportunities and
Challenges of Cinema Post-Production in a Networked World,” described a
demonstration of remote collaboration for digital cinema post-production
conducted in October 2010 after a nine-month effort involving more
than 50 participants from seven CineGrid member organizations who agreed
to work together on this project: Disney Studios, NTT Network
Innovation Laboratory, Skywalker Sound, Digital Domain, UCSD/Calit2,
UIC/EVL, and Pacific Interface.
![]() |
| Luc Renambot, research professor at the Electronic Visualization Laboratory (EVL) at the University of Illinois, Chicago, conducted several tele-demos with Calit2 and EVL at Cinegrid 2010 using SAGE software in the Calit2 Virtulab. |
The CineGrid@Disney demonstration
relied on the active cooperation of five of CineGrid’s network members —
CENIC, JGN2, GEMnet, PNWGPOP and StarLight — who provided 1GigE and
10GigE connectivity to the geographically separated participants; in
addition, the City of Burbank provided critical last-mile connectivity
at 10Gbps from Disney to CENIC, the CineGrid hub in the Los Angeles
region.
The CineGrid@Disney demonstration
showcased how it is feasible today, using high speed research networks
like CENIC, to create a real-time fully interactive networked
post-production environment for digital cinema using high quality sound
and picture to work between widely distributed facilities on critical
creative tasks. The challenge was to bring together, into a single room,
several different creative workflows linking multiple remote locations
and using very high quality media running over high speed networks for
interactive, real-time remote collaboration.
Specific use cases demonstrated included: 4K/60p telepresence virtual conference room; critical viewing of digitally restored archival film elements at 4K and 2K resolutions, streaming from a remote server; Digital Intermediate (DI) color grading; critical viewing of 3D HD stereoscopic visual effects; collaborative audio editing and mixing; and use of a SAGE multi-panel display walls for collaborative review of multimedia marketing materials. While most of these use cases involved point-to-point bilateral collaboration, several required triangular collaboration configurations using multicasting.
Calling it an “important moment in telecollaboration,”
Silverman said the goal of the demo was to find ways that a “connected”
digital studio can better serve filmmakers in an industry increasingly
constrained by vast amounts of data, shrinking timeframes for delivery
and even something as mundane as freeway traffic.
“Traveling from Burbank to Santa Monica by car takes longer than
getting on a plane and traveling to San Francisco,” Silverman noted,
adding that more and more film studios are moving their operations
abroad to save on time, production costs and (as Herr noted) go “where
the talent, or the tax breaks, or the scenery is the best.”
Added Silverman: “Connectivity is going from something that’s nice to have to something we need to have. When we’re linked in exact real-time, these networks literally allow us to shrink time. We want to redefine the experience of collaborating in a virtual meeting room to collaborating in a virtual media room. The ultimate goal is to create an industry platform that can allow the entire industry to connect and work together at once.”
Meanwhile, researchers in academia continue to improve upon
platforms they have created for remote collaboration. Richard Weinberg
of the University of Southern California School of Cinematic Arts
demonstrated his efforts to “digitize the ocean one drop at a time” in a
presentation called “Micro-O-Worlds, where he showcased a selection of
live slides and movies of microscopic ocean life that he captured by
interfacing a RED camera with a modern optical microscope. Weinberg took
advantage of Calit2’s advanced virtual telepresence capabilities to
collaborate face-to-face, in real-time, with two USC microbiologists,
who gave a play-by-play account of the various micro-organism species on
view on the Calit2 auditorium’s 18x32’ screen — creatures so small
they would fit into the letter “e” in the “United States of America”
imprint on a dime.
Larry Smarr, director of Calit2, remarked that such
high-definition, real-time collaboration is possible at Calit2 because
“we have made the necessary human and technical resource investments to
drive applications of the optical network revolution.”
“CineGrid has built a global community which helps Calit2 decipher
our connected future,” he said. “More and more of Calit2's global
projects utilize dedicated 10 gigabit optical lightpaths. Calit2 was
born global, born connected at 10 gigabit.”
Research scientist Tom DeFanti, director of visualization at
Calit2 and a founding member of CineGrid, says that as CineGrid evolves
it has emerged as “the tippy tip of what’s possible.”
“We’ve spent years apologizing for the stability and reliability of the technologies shown at CineGrid conferences in the past, but as these technologies improve, we don’t have to do that anymore. These things we’ve been doing as big experiments all these years have now become the new normal.”



